纳米药物输送系统提高肿瘤多肽疫苗效应的研究进展

赵妍,孟胜男

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (6) : 437-441.

PDF(709 KB)
PDF(709 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (6) : 437-441. DOI: 10.11669/cpj.2016.06.003
综 述

纳米药物输送系统提高肿瘤多肽疫苗效应的研究进展

  • 赵妍,孟胜男*
作者信息 +

Research Progress of Nanoparticle Drug Delivery Systems Designed to Improve Cancer Peptide Vaccines

  • ZHAO Yan,MENG Sheng-nan*
Author information +
文章历史 +

摘要

作为一种新的治疗策略,免疫疗法正让抗肿瘤治疗步入“新时代”,肿瘤多肽疫苗也随之展现出良好的应用前景。将纳米药物输送系统应用于肿瘤多肽疫苗,成为近年来的研究热点。纳米药物输送系统作为纳米佐剂,具有提高多肽稳定性、靶向传递抗原、促进抗原的摄取和递呈、激活抗原特异性免疫应答等作用;可通过多种途径提高肿瘤多肽疫苗的免疫效应和治疗效果。笔者结合国内外研究前沿,对纳米药物输送系统提高肿瘤多肽疫苗免疫应答的作用机制、递药模式、药效学等内容进行归纳和总结。同时,对纳米药物输送系统递送肿瘤多肽疫苗所面临的困境进行了初步分析和展望。

Abstract

As a new treatment strategy,immunotherapy has been leading oncotherapy into a new era,and cancer peptide vaccine has been developed as a promising prospect. In recent years applying nanoparticle drug delivery systems to the development of cancer peptide vaccines has became the research hotspot. As nanoparticle-based adjuvants,nanoparticle drug delivery systems can enhance immune response and therapeutic effect through various ways. In this review,we introduce the role of nanoparticle drug delivery systems in cancer peptide vaccines,particularly focusing on several kinds of nanoparticle drug delivery systems for improving immune response of cancer peptide vaccines. Finally,the challenges of applying nanoparticle drug delivery systems to deliver cancer peptide vaccines are preliminary analyzed, and the prospect is looked into.

关键词

肿瘤免疫治疗 / 纳米药物输送系统 / 肿瘤多肽疫苗 / 纳米佐剂

Key words

cancer immunotherapy / nanoparticle drug delivery system / cancer peptide vaccine / nanoparticle adjuvant

引用本文

导出引用
赵妍,孟胜男. 纳米药物输送系统提高肿瘤多肽疫苗效应的研究进展[J]. 中国药学杂志, 2016, 51(6): 437-441 https://doi.org/10.11669/cpj.2016.06.003
ZHAO Yan,MENG Sheng-nan. Research Progress of Nanoparticle Drug Delivery Systems Designed to Improve Cancer Peptide Vaccines[J]. Chinese Pharmaceutical Journal, 2016, 51(6): 437-441 https://doi.org/10.11669/cpj.2016.06.003
中图分类号: R944   

参考文献

[1] INOZUME T. Recent clinical trials of tumor immunotherapy [J]. Nihon Rinsho Meneki Gakkai Kaishi,2013,36(3):134-138.
[2] COUZIN-FRANKEL J. Breakthrough of the year 2013 [J]. Cancer Immunother Sci,2013,342(6165):1432-1433.
[3] MCNUTT M. Cancer immunotherapy [J]. Science,2013,342(6165):1417.
[4] RAVAL R R,SHARABI A B,WALKER A J,et al.Tumor immunology and cancer immunotherapy:Summary of the 2013 SITC primer [J]. J Immunother Cancer,2014,2:14.
[5] ALY H A. Cancer therapy and vaccination [J]. J Immunol Methods,2012,382(1-2):1-23.
[6] YANG J,ZHANG Q,LI K,et al.Composite peptide-based vaccines for cancer immunotherapy (Review) [J]. Int J Mol Med,
2015,35(1):17-23.
[7] PEREZ S A,VON HOFE E,KALLINTERIS N L,et al. A new era in anticancer peptide vaccines [J]. Cancer,2010,116(9):2071-2080.
[8] YAMAGUCHI Y,YAMAUE H,OKUSAKA T,et al.Guidance for peptide vaccines for the treatment of cancer [J]. Cancer Sci,2014,105(7): 924-931.
[9] DENIES S,CICCHELERO L,VAN AUDENHOVE I,et al.Combination of interleukin-12 gene therapy,metronomic cyclophosphamide and DNA cancer vaccination directs all arms of the immune system towards tumor eradication [J]. J Controlled Release,2014,187:175-182.
[10] DEVAUD C,JOHN L B,WESTWOOD J A,et al.Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy [J]. Oncoimmunology, 2013,2(8):e25961.
[11] TAN Z,ZHOU J,CHEUNG A K,et al.Vaccine-elicited CD8+ T cells cure mesothelioma by overcoming tumor-induced immunosuppressive environment [J]. Cancer Res,2014,74(21):6010-6021.
[12] CRUZ L J,RUEDA F,CORDOBILLA B,et al.Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy [J]. Molecular Pharm,2011,8(1):104-116.
[13] LIU S Y,WEI W,YUE H,
et al. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy [J]. Biomaterials, 2013,34(33):8291-8300.
[14] MURAOKA D,HARADA N,HAYASHI T,et al.Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity [J]. ACS Nano,2014,8(9):9209-9218.
[15] IRVINE D J,SWARTZ M A,SZETO G L. Engineering synthetic vaccines using cues from natural immunity [J]. Nat Mater,2013,12(11):978-990.
[16] IRVINE D J,HANSON M C,RAKHRA K, et al. Synthetic nanoparticles for vaccines and immunotherapy [J]. Chem Rev,2015,115(19):11109-11146.
[17] SWARTZ M A,HIROSUE S,HUBBELL J A. Engineering approaches to immunotherapy [J]. Sci Trans Med,2012,4(148): 148-149.
[18] FIFIS T,GAMVRELLIS A,CRIMEEN-IRWIN B, et al. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors [J]. J Immunol,2004,173(5): 3148-3154.
[19] XU Z,RAMISHETTI S,TSENG Y C,et al.Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis [J]. J Controlled Release,2013,172(1):259-265.
[20] XU Z,WANG Y,ZHANG L,et al.Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment [J]. ACS Nano,
2014,8(4):3636-3645.
[21] CRUZ L J,ROSALIA R A,KLEINOVINK J W,et al.Targeting nanoparticles to CD40,DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: A comparative study [J]. J Controlled Release,2014,192: 209-218.
[22] KELLER S,WILSON J T,PATILEA G I,
et al. Neutral polymer micelle carriers with pH-responsive,endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses [J]. J Controlled Release,2014,191: 24-33.
[23] DE TITTA A,BALLESTER M,JULIER Z,et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose [J]. Proc Natl Acad Sci USA,2013,110(49): 19902-19907.
[24] FOX C B,SIVANANTHAN S J,DUTHIE M S,et al. A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7 [J]. J Nanobiotechnol
,2014,12: 17.
[25] CRUZ L J,RUEDA F,SIMON L,et al.Liposomes containing NYESO1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines [J]. Nanomedicine (Lond), 2014,9(4):435-449.
[26] THOMANN J S,HEURTAULT B,WEIDNER S,et al.Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting [J]. Biomaterials,
2011,32(20):4574-4583.
[27] MANSOURIAN M,BADIEE A,JALALI S A, et al. Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN [J]. Immunol Lett,2014,162(1 Pt A):87-93.
[28] SHARIAT S,BADIEE A,JALALI S A,et al.P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer [J]. Cancer Lett,2014,355(1):54-60.
[29] ZHANG Z P,TONGCHUSAK S,MIZUKAMI Y,et al.Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery [J]. Biomaterials,2011,32(14):3666-3678.
[30] MA W,CHEN M,KAUSHAL S,et al.PLGA Nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses [J]. Int J Nanomed,2012,7:1475-1487.
[31] SALUJA S S,HANLON D J,SHARP F A,et al.Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen [J]. Int J Nanomed, 2014,9:5231-5246.
[32] CAMPBELL D F,SAENZ R,BHARATI I S,et al.Enhanced anti-tumor immune responses and delay of tumor development in human epidermal growth factor receptor 2 mice immunized with an immunostimulatory peptide in poly(
D,L-lactic-co-glycolic) acid nanoparticles [J]. Breast Cancer Res, 2015,17:48.
[33] MATSUO K,YOSHIKAWA T,ODA A,et al.Efficient generation of antigen-specific cellular immunity by vaccination with poly(gamma-glutamic acid) nanoparticles entrapping endoplasmic reticulum-targeted peptides [J]. Biochem Biophys Res Commun,2007,362(4):1069-1072.
[34] YAMAGUCHI S,TATSUMI T,TAKEHARA T,et al.EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor [J]. Cancer Immunol Immunother,2010,59(5):759-767.
[35] TANG J,YIN R,TIAN Y,et al.A novel self-assembled nanoparticle vaccine with HIV-1 Tat(4)(9)(-)(5)(7)/HPV16 E7(4)(9)(-)(5)(7) fusion peptide and GM-CSF DNA elicits potent and prolonged CD8(+) T cell-dependent anti-tumor immunity in mice [J]. Vaccine,2012,30(6):1071-1082.
[36] LIU T Y,HUSSEIN W M,GIDDAM A K, et al. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine [J]. J Med Chem, 2015,58(2):888-896.
[37] LIU T Y,HUSSEIN W M,JIA Z F,et al.Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer [J]. Biomacromolecules,2013,14(8):2798-2806.
[38] YANG J,LI Z H,ZHOU J J,et al.Preparation and antitumor effects of nanovaccines with MAGE-3 peptides in transplanted gastric cancer in mice [J]. Chin J Cancer,2010,29(4):359-364.
[39] LIN A Y,LUNSFORD J,BEAR A S,
et al. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro [J]. Nanoscale Res Lett,2013,8(1):72.
[40] ALMEIDA J P,LIN A Y,FIGUEROA E R, et al. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models [J]. Small, 2015,11(12):1453-1459.
[41] SHI R,HONG L,WU D,et al.Enhanced immune response to gastric cancer specific antigen peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion [J]. Cancer Biol Ther,2005,4(2):218-224.
[42] AGUILAR F F,BARRANCO J J,FUENTES E B,et al.Very small size proteoliposomes (VSSP) and montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer [J]. Vaccine,2012,30(46): 6595-6599.
[43] VASIEVICH E A,RAMISHETTI S,ZHANG Y,et al. Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model [J]. Mol Pharm,2012,9(46):261-268.
PDF(709 KB)

Accesses

Citation

Detail

段落导航
相关文章

/